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RAPID COMMUNICATION
A novel copper metabolism-related
signature model for predicting the
prognosis, target drugs, and
immunotherapy in stomach
adenocarcinoma
Stomach adenocarcinoma (STAD) is one of the most com-
mon gastric neoplasms with a high death rate. Therefore,
there is an urgent need to propose an efficient therapy for
STAD. Copper plays key roles in regulating the distribution
of immune cells and affecting the tumor immune escape,
and may be a novel indicator of immunotherapy in STAD.
However, the specific impact of copper metabolism-related
genes (CMRGs) on the patient’s prognosis, tumor microen-
vironment, and immunotherapeutic response remains
unelucidated.

In this study, differential expression analysis and multi-
variate Cox regression analysis were conducted to construct
a copper metabolism-related prognostic signature (CMRPS)
model consisting of 11 prognostic signature genes. A sur-
vival plot and a receiver operating characteristic (ROC) plot
were drawn to illuminate the reliability and sensitivity of
this model with the area under the ROC curve of 5-year
survival time (AUC5eyear). The biological functions of the
CMRPS were further explored by gene set variation analysis
(GSVA), and the results indicated that copper metabolism
might affect the immune pathways and metabolic reprog-
ramming. Additionally, we performed multiple immuno-
therapy-related analyses and revealed that comparing two
risk groups, the low-risk group responded better to immu-
notherapy, while the high-risk group manifested a higher
drug sensitivity to common anticancer drugs. The flow di-
agram of this study is shown in Figure 1.

First, the expression profile and the clinical data of 375
STAD samples and 32 normal samples were downloaded
from The Cancer Genome Atlas (TCGA) database, and 8833
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differentially expressed genes (DEGs) in STAD samples
compared with normal samples were identified through the
differential expression analysis using the Wilcoxon rank-
sum test in R software (Fig. S1A). Moreover, we extracted
the gene sets related to copper metabolism from the Mo-
lecular Signature Database version 7.1 (MSigDB v7.1),1 and
obtained 138 CMRGs (Appendix A) after removing over-
lapping genes. Afterward, we identified 25 DEGs related to
copper metabolism (DEGs-CM) from the intersection be-
tween 8833 DEGs and 138 CMRGs in STAD (Fig. 1A; Fig. S1B).

By the multivariate Cox regression analysis of 25 DEGs-
CM, we further constructed a prognostic CMRPS model,
which was composed of 11 DEGs in CMRPS (DEGs-CMRPS)
(Fig. 1B and Table S1). Then, we computed the CMRPS score
of every patient through the Cox regression equation of the
CMRPS model and separated the patients into high- and
low-risk clusters according to their median values (Fig. S1C,
D). The reliability of the CMRPS model was tested by the
ROC curve where AUC5eyear was 0.821 (Fig. 1C). The
KaplaneMeier survival curve of the two groups suggested
that the 1- to 10-year patient survival rates in the low-risk
group surpassed those in the high-risk group (Fig. 1D).

Second, GSVA was then used to reveal potential biolog-
ical functional differences between two risk groups of the
CMRPS model. Taking the expression levels of KEGG
pathway gene set in “seth.all.v7.1.symbols” as inputs1 and
P < 0.05 as the significance criterion, 59 KEGG pathways
were found to be enriched in two risk groups, and the
enrichment calculations were conducted using the “GSVA”
package in R. As shown in Fig. 1E and Appendix B, the high-
risk group was enriched in 45 pathways, including four im-
mune pathways (complement and coagulation cascades
pathway, cytokineecytokine receptor interaction pathway,
behalf of KeAi Communications Co., Ltd. This is an open access
by/4.0/).
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Figure 1 Construction of CMRPS in STAD. (A) Venn plot was used to identify DEGs-CM between DEGs and CMRGs. The overlapping
region represents the shared components between the two sets. (B) Heatmap of 11 DEGs-CMRPS in CMRPS, comparing their
expression levels between the high-risk and low-risk groups. The heatmap depicts gene expression levels in individual samples,
where blue denotes the high-risk group, and orange denotes the low-risk group. Each square represents the expression level of a
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TGF-b signaling pathway, and leukocyte transendothelial
migration pathway) and three metabolic pathways (arach-
idonic acid metabolism pathway, drug metabolism cyto-
chrome P450 pathway, and taurine and hypotaurine
metabolism pathway), while the low-risk group was
enriched in 14 pathways, including another three metabolic
pathways (sulfur metabolism pathway, metabolism of xe-
nobiotics by cytochrome P450 pathway, and glyoxylate and
dicarboxylate metabolism pathway), indicating the signifi-
cant disparities in immune- and metabolic-related path-
ways between two CMRPS groups.

Subsequently, single-sample gene set enrichment anal-
ysis (ssGSEA)2 was performed based on the expression levels
of five gene sets (Appendix C) classified in programmed cell
death pathways. It was observed with statistical signifi-
cance that the enrichment score of cuproptosis-related
genes in the low-risk group was higher than that in the high-
risk group, the direct opposite trend to that of ferroptosis-,
autophagy- and pyroptosis-related genes (all P < 0.05),
suggesting the impact of copper metabolism on pro-
grammed cell death (Fig. 1F).

Third, we also used ssGSEA to investigate the potential
connections between the CMRPS model and the tumor
immune microenvironment. According to the expression
levels of 38 reported immune-related gene sets, which
were classified into 23 immune cell infiltrations (Appendix
D)3 and 15 immune functions (Appendix E),4 positive cor-
relations with statistical significance (P < 0.05) were ob-
tained between the CMRPS scores and the infiltration
degrees of 18 immune cells (Activated.dendritic.cellna,
CD56bright.natural.killer.cellna, Eosinophilna, and Gam-
ma.delta.T.cellna, etc.) and between the CMRPS scores
and the function scores of five immune bioprocesses (APC-
co_stimulation, CCR, Parainflammation, Type I IFN
Response, and Type II IFN Response) (Fig. 1G). Further-
more, the Spearman correlations between 23 immune cell
infiltrations and 11 DEGs-CMRPS showed that S100A12,
MDM2, LOX, and ADAM9 were immune genes while S100A5,
F5, and COX19 were anti-immune genes, as their expres-
sion were positively (former) or negatively (latter) asso-
ciated with the infiltration degrees of immune cells in
STAD samples (Fig. 1H). The findings highlighted the sig-
nificant role of copper metabolism in the tumor immune
microenvironment.
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Fourth, we explored the relationship of CMRPS with the
immunotherapy response. By comparing the somatic mu-
tation data of patients in two CMRPS groups based on
single nucleotide variant analysis using the “maftools”
package in R, we observed that the low-risk group held a
higher tumor mutation burden than the high-risk group
(P < 0.001; Fig. 1I; Fig. S2A, B). The CMRPS scores showed
a negative association with the tumor mutation burden of
patients with STAD (r Z �0.2, P Z 0.00016; Fig. 1J). In
addition, tumor immune dysfunction and exclusion (TIDE)
analysis based on mRNA expression in patients with STAD
indicated a lower TIDE score in the low-risk group
compared with the high-risk group (P < 0.01; Fig. 1K), and
the responder group had a lower CMRPS score than the
non-responder group (P < 0.01; Fig. 1L). Furthermore, by
comparing the composition of patients’ microsatellite
instability (MSI) subtypes from The Cancer Immunome
Atlas (TCIA) website3 between two CMRPS groups, we
observed that the low-risk group possessed a higher pro-
portion of MSI-H (23%) than the high-risk group (11%),
suggesting a relatively higher immunotherapy sensitivity
of patients in the low-risk group (Fig. 1M). The CMRPS
scores of patients with STAD were statistically different
between patients with MSS and MSI-H and between pa-
tients with MSI-L and MSI-H (P < 0.001; Fig. 1N). This
shows that the CMRPS score of the CMRPS model might
help the sectionalization of MSI and the choice of the
immunotherapy type. Thus, the correlation between the
CMRPS and immunotherapy response provided insights into
the potential utility of the CMRPS model in guiding
personalized immunotherapy strategies.

Finally, we evaluated the therapeutic drug reaction of
two CMRPS groups to six common anticancer drugs using the
“oncoPredict” package in R according to drug sensitivity
data, the half maximum inhibition concentration (IC50),
from the Genomics of Drug Sensitivity in Cancer database
(GDSC)5 and mRNA expressions of patients with STAD. The
low-risk group was observed to be more sensitive to five of
these drugs (axitinib, cisplatin, gemcitabine, oxaliplatin,
and sorafenib) but not 5-fluorouracil than the high-risk
group with statistical significance (Fig. 1O), denoting that
the CMRPS model could serve as a reliable indicator of drug
sensitivity to facilitate accurate, personalized treatment
for patients with cancer.
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In this study, we established a copper metabolism-
related prognostic signature that functioned as the pre-
dictor of patient prognosis and further revealed that copper
metabolism might have important roles in the immune-
related pathways and metabolic reprogramming-related
pathways in STAD. In addition, copper metabolism could
affect programmed cell death and sensitivity to anticancer
drugs. In summary, our study has contributed to the un-
derstanding of the correlations among copper metabolism,
the tumor microenvironment, and immunotherapy in STAD
and provided new prognostic biomarkers, therapeutic tar-
gets, and immunotherapeutic indicators for the clinical
research and treatment of STAD.
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